Year 9 Physics Revision checklist

Use this to help guide your revision. Remember to make your revision <u>active</u>. Make notes, produce prompt cards, get others to test you etc.

There are also some independent study guides which can be found by going to <u>http://www.bws-school.org.uk/Curriculum-Exams/Science/Files/Y9Files/</u> on the School website.

Electricity Topic	٢	٢	8
Define an insulator and a conductor is and name 2 -3 examples of each			
Describe how current changes in a series or parallel circuit, be able to use this knowledge to calculate the current in different parts of the circuits			
Describe how voltage changes in a series or parallel circuit; be able to use this knowledge to calculate the voltage in different parts of the circuits.			
Use the Ohm's law equation Voltage (v) = Current (A) x Resistance (Ω) to calculate voltage, current or resistance (re-arrange the equation).			
Apply Ohm's Law to explain how voltage/current/resistance changes in different circuits.			
Calculate how resistors combine in series and be able to use this knowledge to calculate the total resistance in a circuit.			
Describe how to set up a circuit to measure current, voltage or calculate resistance.			
Be able to draw a graph of voltage and current and use the graph (gradient) to calculate the resistance of a resistor. Make sure you know which axes each need to be plotted onto.			
Explain that energy is transferred in a circuit and explain which circuits transfer energy more quickly than others (assuming they each have the same number of cells/lamps)			
State that the amount of energy transferred will depend on the voltage and the current in a circuit			
Recall that there is a magnetic field around a current carrying wire.			
Use the right hand grip rule and Fleming's left hand rule to explain the catapult effect on a current carrying wire in a magnetic field.			

List the methods for increasing the force on a wire in a magnetic field and describe the effect of reversing the current or field direction.		
Explain how a dynamo works		
Explain the energy transfers in the generation of electricity		
Describe the steps within a power station used to generate electricity		
Describe how a generator converts kinetic energy into electrical energy		
Calculate the efficiency of a power station in terms of energy input and output		
Forces and Motion Topic	٢	ଞ
Calculate speed from gradient of distance-time graphs		
State Newton's first law of motion: "An object continues at rest or in a straight line at steady speed unless acted on by a force."		
Recognise friction as a force opposing and vital for motion e.g. cars on low friction surface struggle to get moving.		
Qualitatively describe the flight of a free fall parachutist in terms of the varying forces involved		
Recall and use the equation for work done W = Fxd		
Recall and use the equation for mechanical power $P = W/t$		
State and explain simple energy transfers including basic efficiency calculations		
Define density and use the density equation mass / volume		
Define pressure as force per unit area and use the basic pressure equation		
Define the Pascal, Pa as 1N/m ²		
Recognise that 1 atm is 10^5 or 100 000 Pa		
Derive the equation for pressure in a fluid as Pressure = density x g x depth		

Use the equation P = ρ g h to calculate pressure due to a liquid e.g. at the bottom of a swimming pool.		
Describe a hydraulic machine as a force multiplier and explain how it works		
Describe an experiment to find the centre of mass of a 2 dimensional shape		
Define moment of a force		
State that the net moment is zero for an object to be in rotational equilibrium		
Solve simple problems involving balanced and unbalanced moments		
Use the following prefixes as appropriate: • nano = 10^{-9} • micro = 10^{-6} • milli = 10^{-3} • centi = 10^{-2} • kilo = 10^{3} • mega = 10^{6} • giga = 10^{9} • tera = 10^{12}		
Use appropriate units in all calculations		
Convert between units as appropriate e.g. $5000 \text{ cm}^2 = 0.500 \text{ m}^2$		
Give answers to an appropriate precision e.g. if the data in the question is to 2 significant figures the answer should only be given to 2 or 3 significant figures. Present calculations in a clear and concise manner		
 e.g. A force of 10N moves an object through a distance of 5 m in a time of 8s. Calculate: a) The work done. b) The power. 		
Solution:		
a) W = Fxd = 10 X 5 = <u>50 J</u>		
b) P=W/t = 50/8		

= <u>6.3 W</u> or <u>6.3 J/s</u>		